Рефераты   Доклады  Документы  
Курсовая работа  
Лекции  
Литература  

Понятие вектора

Понятие вектора



страница1/3
Дата публикации31.01.2015
ТипДокументы
100-edu.ru > Математика > Документы
  1   2   3






Оглавление:


1. Введение

2. Понятие вектора.

3. Сложение векторов

4. Равенство векторов

5.Скалярное произведение двух векторов и его свойства.

6. Разложение вектора по двум неколлинеарным векторам

7. Свойства операций над векторами

8. Применение векторов к решению задач

9. Заключение

10. Примечание

11. Список литературы

Введение
Одним из фундаментальных понятий современной математики являются вектор и его обобщение – тензор. Эволюция понятия вектора осуществлялась благодаря широкому использованию этого понятия в различных областях математики, механики, а так же в технике.

Конец прошлого и начало текущего столетия ознаменовались широким развитием векторного исчисления и его приложений. Были созданы векторная алгебра и векторный анализ, общая теория векторного пространства. Эти теории были использованы при построении специальной и общей теории относительности, которые играют исключительно важную роль в современной физике.

В соответствии с требованиями новой программы по математике понятие вектора стало одним из ведущих понятий школьного курса математики.

Что же такое вектор? Как ни странно, ответ на этот вопрос представляет известные затруднения. Существуют различные подходы к определению понятия вектора; при этом даже если ограничиться лишь наиболее интересным здесь для нас элементарно-геометрическим подходом к понятию вектора, то и тогда будут иметься различные взгляды на это понятие. Разумеется, какое бы определение мы ни взяли, вектор – с элементарно-геометрической точки зрения - есть геометрический объект, характеризуемый направлением (т.е. заданной с точностью до параллельности прямой и направлением на ней) и длиной. Однако такое определение является слишком общим, не вызывающим конкретных геометрических представлений. Согласно этому общему определению параллельный перенос можно считать вектором. И действительно, можно было бы принять такое определение: «Вектором называется всякий параллельный перенос». Это определение логически безупречно, и на его основе может быть построена вся теория действий над векторами и развиты приложения этой теории. Однако это определение, несмотря на его полную конкретность, нас здесь также не может удовлетворить, так как представление о векторе как о геометрическом преобразовании кажется нам недостаточно наглядным и далеким от физических представлений о векторных величинах.

Понятие вектора






Векторомназывается семейство всех параллельных между собой одинаково направленных и имеющих одинаковую длину отрезков (рис.1). Вектор изображают на чертежах отрезком со стрелкой (т.е. изображают не все семейство отрезков, представляющее собой вектор, а лишь один из этих отрезков). Для обозначения векторов в книгах и статьях применяют жирные латинские буквы а, в, с и так далее, а в тетрадях и на доске – латинские буквы с черточкой сверху,


Той же буквой, но не жирной , а светлой (а в тетради и на доске- той же буквой без черточки) обозначают длину вектора. Длину иногда обозначают также вертикальными черточками – как модуль (абсолютную величину) числа. Таким образом, длина вектора а обозначается через а или IаI, а в рукописном тексте длина вектора а обозначается через а или IаI. В связи с изображением векторов в виде отрезков (рис.2) следует помнить, что концы отрезка, изображающего вектор, неравноправны: одного конца отрезка к другому. Различают начало и конец вектора (точнее, отрезка, изображающего вектор).

Весьма часто понятию вектора дается другое определение: вектором называется направленный отрезок. При этом векторы (т.е. направленные отрезки), имеющие одинаковую длину и одно и то же направление (рис.3), уславливаются считать равными.

Векторы называются одинаково направленными, если их полупрямые одинаково направлены. Векторы называются противоположно направленными, если их полупрямые противоположно направлены.

Начало вектора может совпадать с его концом. Такой вектор называется нулевым вектором. Нулевой вектор обозначается нулем с черточкой (ō). О направлении нулевого вектора не говорят. Абсолютная величина нулевого вектора считается равной нулю.


Сложение векторов

Все сказанное пока еще не дает понятие вектора достаточно содержательным и полезным. Большую содержательность и богатую возможность приложений понятие вектора получает тогда, когда мы вводим своеобразную «геометрическую арифметику» – арифметику векторов, позволяющую складывать векторы, вычитать их и производить над ними целый ряд других операций. Отметим в связи с этим, что ведь и понятие числа становится интересным лишь при введении арифметических действий, а не само по себе.

Суммой векторов а и в с координатами а1, а2 и в1, в2 называется вектор с с координатами а1 + в1, а2 + в2, т.е.

а 1; а2) + в 12) = с1 + в1; а2 + в2).

Следствие:

а + в = в + а , (коммутативность)

а + ( в + с ) = (а + в) + с. (ассоциативность)



Для доказательства коммутативности сложения векторов на плоскости необходимо рассмотреть пример.

а и в – векторы (рис.5).

Пусть ОА =а, ОВ = в.

1. Строим параллелограмм ОАСВ: АМ II ОВ, ВН II ОА.

2. а = ОА = ВС,

в = ОВ = АС, т.к. параллелограмм.

3. ОА + АС = ОВ + ВС = ОС, значит а + в = в + а. ч.т.д.

Для доказательства ассоциативности мы отложим от произвольной точки О вектор ОА = а, от точки А вектор АВ = в и от точки в – вектор ВС = с. Тогда мы имеем: АВ + ВС =АС.

(а + в ) + с = (ОА + АВ) + ВС = ОВ + ВС = ОС,

а + (в + с ) = ОА + (АВ + ВС) = ОА + АС = ОС,

откуда и следует равенство а + ( в + с ) = (а + в) + с. Заметим, что приведенное доказательство совсем не использует чертежа. Это характерно ( при некотором навыке ) для решения задач при помощи векторов.

Остановимся теперь на случае, когда векторы а и в направлены в противоположные стороны и имеют равные длины; такие векторы называют противоположными. Наше правило сложения векторов приводит к тому, что сумма двух противоположных векторов представляет собой «вектор», имеющий нулевую длину и не имеющий никакого направления; этот «вектор» изображается «отрезком нулевой длины», т.е. точкой. Но это тоже вектор, который называется нулевым и обозначается символом 0.
Равенство векторов

Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.

Из данного определения равенства векторов следует, что разные векторы одинаково направлены и равны по абсолютной величине.

И обратно: если векторы одинаково направлены и равны по абсолютной величине, то они равны.

Действительно, пусть векторы АВ и СD – одинаково направленные векторы, равные по абсолютной величине (рис.6). Параллельный перенос, переводящий точку С в точку А, совмещает полупрямую СD с полупрямой АВ, так как они одинаково направлены. А так как отрезки АВ и CD равны, то при этом точка D совмещается с точкой В, то есть параллельный перенос переводит вектор CD в вектор АВ. Значит, векторы АВ и СD равны, что и требовалось доказать.









Скалярное произведение двух векторов и его свойства

Скалярным произведением двух нулевых векторов называется число, равное произведению числовых значений длин этих векторов на косинус угла между векторами.

Обозначение: а х в = IaI * IbI * cos ( а, в).

Свойства скалярного произведения:

1. а х в = в х а.

2. Для того, чтобы два нулевых вектора а и в были перпендикулярны, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. а х в = 0.

3. Выражение а х а будем обозначать а2 и называть скалярным квадратом вектора а.

Разложение вектора по двум неколлинеарным

векторам

Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых (рис. 7). Коллинеарные векторы либо одинаково направлены, либо противоположно направлены.
  1   2   3

Добавить документ в свой блог или на сайт

Похожие:

Автономной республики крым
Определение угла выхода вектора намагниченности в магнитооптических материалах”

Гоу спо «Чебоксарский электромеханический колледж» Методическая разработка Квантовая физика
Применение фотоэффекта в технике. Понятие об эффекте Комптона. Давление света. Опыт П. Н. Лебедева. Химическое действие света, его...

Мендель Виктор Васильевич Метод координат в пространстве Координаты...
Как известно, вектор можно разложить по векторам,,, то есть представить в виде. Такое разложение – единственное

Реферат "Собственные вектора и собственные значения линейного оператора"
Любой вектор, параллельный красному вектору, также будет собственным, соответствующим тому же собственному значению. Множество всех...

Реферат по музыкальной психологии
Неразвивающихся способностей в природе не существует и существовать не может. Само понятие способности – понятие динамическое

3. Семейные правоотношения понятие, элементы, основания возникновения....
Понятие и предмет семейного права. Метод регулирования семейно-правовых отношений

Законодательная процедура парламента в з с
Мажоритарные избирательные системы. Понятие и виды Мажоритарная избир система абсолютного большинства (понятие,виды)

№1. Понятие о русском языке и культуре речи Понятие о языке и речи. Функции языка и речи
Понятие литературного языка. Признаки литературного языка. Русский литературный язык

Понятие документационного обеспечения управления образовательными учреждениями
Документ (от лат documentum доказательство, свидетельство) – понятие информационное, которое в отдельных случаях (при наличии подписи...

Реферат Понятие информации и её определение. Понятие информации, виды информации. Ее свойства
Термин информация происходит от латинского слова informatio, что означает «сведения, разъяснения, изложение»

Поиск


При копировании материала укажите ссылку © 2016

контакты
100-edu.ru
100-edu.ru